(55932024
C++ For Fun and Profit (choose one)

Eric Smith

Nonpareil
Written in C, using GTK+ toolkit
Started in 1995 as casmsim (HP-45, -55) and nsim (HP-41C)

.Released as open source (GPL 2)
.Significant technical debt

.GTK+ Is cross platform, but Windows and macOS are significantly
less well supported than Linux

Nonpareil I

.Described at HHC 2023 and on MoHPC forums
.Rewritten in C++, using Qt6 toolkit

.Qt Is a more powerful and easier to use toolkit
.Qt has better cross-platform support

.C++ Is inherently object-oriented, while | had to do object-oriented
architecture in C “by hand”

.C++ and its Standard Template Library (STL) offer a higher level of
abstraction than C

.Should be more maintainable
JInitially will not be open source — possibly may be later

(:]5[032024 2

Nonparell || advantages

.Uses scalable vector graphics rather than bitmaps

Will look decent at a range of sizes, not just integer multiples
Will look smooth, not pixelated, at larger sizes

.Can support more calculator modelx

.Better able to support add-ons like 41C modules

.Better able to support I/O and networking

(:]5[032024 3

Nonparell Il development issues

.Need to create SVG files for each supported calculator model (and
peripheral), with specific structure and element naming, in order for
code to identify keys, display segments, etc.

.Custom publish/subscribe non-queued message class
-Multiple inheritance problems

.Standard “Diamond problem” solved by C++ virtual inheritance
.Debugging is somewhat more difficult

(:]5[032024 4

Nonparell Il status

.Currently having difficulty debugging a problem where the
publish/subscribe mechanism is interacting improperly with
multiple inheritance, leading to run-time crashes where debugger
traceback is not very useful

(:]5[032024 5

Side Quest: HP-IL protocol stack
-Motivations:
.Experiment with architecture for Nonpareil Il extensions

.Experiment with HP-IL protocol impimentation closely following
HP-IL Specification state machine model

Work with either 1LB3 HP-IL interface chip, or alternatives such as
virtual HP-IL

(:]5[032024 6

.The HP-IL Specification defines 14 “interface functions”, not all of
which are mandatory. Some functions actually have two or three

state machines, though all state machines for a particular interface
function are shown in a single diagram.

.The HP application note on writing firmware for HP-IL devices
describes implementation using the state machines

.The HP-IL Specification does not REQUIRE using the state
machines defined therein, provided the behavior is equivalent

.Proving equivalence is very hard, as there are many edge cases

(:]5[032024 7

.The 1LB3 chip performs portions of the HP-IL Reciever (R),
Acception Handshake (AH), Source Handshake (SH), and Driver
(D) state machines

.This requires that an HP-IL device using the 1LB3 use alternate
versions of the R, AH, SH, and D statemachines, to account for
1LB3 behavior

.These alternate state machines are documented in the 1LB3 chip
specification, though not in exactly the same representation as the
state machines in the HP-IL specification.

(:]5[032024 8

.The HP-IL specification is designed so that some processing of
the reception of an 11-bit “remote message” can start before all 11
bits are received

.The 1LB3 chip implements this bit-by-bit receive processing,
which provides improved performance for a hardware
Implementation

Virtual HP-IL is based on complete 11-bit remote messages as a
single discrete unit, which in principle increases latency

A PIL-Box (or equivalent) bridging physical HP-IL to virtual HP-IL
through a USB interface would have lower performance due to
needing multiple USB round-trips for a single HP-IL remote

212(632024 9

Examples of ad-hoc HP-IL implementations:

.Early and small HP HP-IL peripherals such as the 82161A tape
drive, 82162A printer, and 82165A HP-IL Converter use the 1LB3,
and use Mostek MK3870 microcontollers with a very limited
amount of ROM and RAM, so firmware implementation had to be

ad-hoc

(:]5[032024 10

Examples of HP-IL implementation using state machines from the

HP-IL specification:

.Mountain Computer HP-IL implementation for the 8048, with
somewhat more memory, used e.g. in the HP 92198A 80-column
video interface and the HP-IL EPROM programmer

(:]5[032024 11

.The C++ HP-IL protocol stack is designed to support both bit-at-a-
time and remote-message-at-a-time interfaces

It does not currently support use of an actual 1LB3 chip, but that
could be added using the previously described alternate R, AH,

SH, and D state machines, and a glue layer to manage the 1LB3
registers

(:]5[032024 12

HP-IL Protocol Stack Status:

.The HP-IL stack has been tested with only a very small number of
test cases, running in an environment with multiple virtual HP-IL
devices, including one controller and at least one device, custom

written for the test cases
.No testing with preexisting virtual HP-IL devices nor physical HP-
IL devices has been performed yet

(:]5[032024 13

HP-IL Protocol Stack Future

.Once it reaches a level of tested functionality sufficient for use In
“normal” virtual HP-IL devices (vs. dedicated test devices), the
code will be made available under an open-source license
(probably GPLv3), independently of Nonparell Il

.l do not intend to suggest that this HP-IL implementation is “better
In any overall sense than other implementation, nor am | pushing
for any existing HP-IL devices to switch to this stack.

]

(:]5[032024 14

General C++ comments

.C++ was created earlier, but the first C++ standard was C++98
(1998)

[Arguably the first “usable” C++ standard was C++11 (2011),

-which provided usable “smart pointers” std::shared_ptr,
std::weak_ptr, and std::unique_ptr, to manage object ownership
and lifetimes

.C++ (including standard libraries) is now a HUGE language — the
official ISO C++23 standard is around 2000 pages, and the in-
development C++26 standard will expand things considerably

.The top three C++ compilers (Microsoft Visual C++, GCC, and
Clang) support most or all of C++20 and some of C++23

(:]5[032024 15

-With the three-year release cycle, each new edition of the
standard introduces a few major enhancements and many minor
ones

.For a while, | stuck to mostly C++17, but there are enough useful
additions in C++20 that my code now depends on it.

.Example: std::format, an I/O formatting library similar to C printf
and scanf, but type-safe

.l am currently avoiding requiring C++23, since compiler and library
support is not yet complete

(:]5[032024 16

C++ future

.C++26 will introduce “static reflection”, the ability for C++ code to
ask the runtime for details of the definitions of classes, data types,
variables, etc.

.Reflection is most commonly seen in dynamic-typed languages
(e.g., Lisp and Python) and/or languages using a virtual machine
(e.g. Java)

-Reflection will greatly simplify base classes that support
serialization and deserialization of objects

.Currently Nonpareil Il needs ad-hoc code for serialization and
deserialization for e.g. calculator state save and reload, but this will
eventually be replaced by static reflection

(:]5[032024 17

	Slide 1: C++ For Fun and Profit (choose one) Eric Smith
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

