
C++ For Fun and Profit (choose one)

Eric Smith
Nonpareil

●Written in C, using GTK+ toolkit

●Started in 1995 as casmsim (HP-45, -55) and nsim (HP-41C)

●Released as open source (GPL 2)

●Significant technical debt

●GTK+ is cross platform, but Windows and macOS are significantly 
less well supported than Linux

1



Nonpareil II

●Described at HHC 2023 and on MoHPC forums

●Rewritten in C++, using Qt6 toolkit

●Qt is a more powerful and easier to use toolkit

●Qt has better cross-platform support

●C++ is inherently object-oriented, while I had to do object-oriented 
architecture in C “by hand”

●C++ and its Standard Template Library (STL) offer a higher level of 
abstraction than C

●Should be more maintainable

●Initially will not be open source – possibly may be later

2



Nonpareil II advantages

●Uses scalable vector graphics rather than bitmaps

●Will look decent at a range of sizes, not just integer multiples

●Will look smooth, not pixelated, at larger sizes

●Can support more calculator modelx

●Better able to support add-ons like 41C modules

●Better able to support I/O and networking

3



Nonpareil II development issues

●Need to create SVG files for each supported calculator model (and 
peripheral), with specific structure and element naming, in order for 
code to identify keys, display segments, etc.

●Custom publish/subscribe non-queued message class

●Multiple inheritance problems

●Standard “Diamond problem” solved by C++ virtual inheritance

●Debugging is somewhat more difficult

4



Nonpareil II status

●Currently having difficulty debugging a problem where the 
publish/subscribe mechanism is interacting improperly with 
multiple inheritance, leading to run-time crashes where debugger 
traceback is not very useful

5



Side Quest: HP-IL protocol stack

●Motivations:

●Experiment with architecture for Nonpareil II extensions

●Experiment with HP-IL protocol implmentation closely following 
HP-IL Specification state machine model

●Work with either 1LB3 HP-IL interface chip, or alternatives such as 
virtual HP-IL

6



●The HP-IL Specification defines 14 “interface functions”, not all of 

which are mandatory. Some functions actually have two or three 

state machines, though all state machines for a particular interface 

function are shown in a single diagram.

●The HP application note on writing firmware for HP-IL devices 

describes implementation using the state machines

●The HP-IL Specification does not REQUIRE using the state 

machines defined therein, provided the behavior is equivalent

●Proving equivalence is very hard, as there are many edge cases

7



●The 1LB3 chip performs portions of the HP-IL Reciever (R), 

Acception Handshake (AH), Source Handshake (SH), and Driver 

(D) state machines

●This requires that an HP-IL device using the 1LB3 use alternate 

versions of the R, AH, SH, and D statemachines, to account for 

1LB3 behavior

●These alternate state machines are documented in the 1LB3 chip 

specification, though not in exactly the same representation as the 

state machines in the HP-IL specification.

888888



●The HP-IL specification is designed so that some processing of 

the reception of an 11-bit “remote message” can start before all 11 

bits are received

●The 1LB3 chip implements this bit-by-bit receive processing, 

which provides improved performance for a hardware 

implementation

●Virtual HP-IL is based on complete 11-bit remote messages as a 

single discrete unit, which in principle increases latency

●A PIL-Box (or equivalent) bridging physical HP-IL to virtual HP-IL 

through a USB interface would have lower performance due to 

needing multiple USB round-trips for a single HP-IL remote 

message
999999



Examples of ad-hoc HP-IL implementations:

●Early and small HP HP-IL peripherals such as the 82161A tape 
drive, 82162A printer, and 82165A HP-IL Converter use the 1LB3, 
and use Mostek MK3870 microcontollers with a very limited 
amount of ROM and RAM, so firmware implementation had to be 
ad-hoc

10



Examples of HP-IL implementation using state machines from the 

HP-IL specification:

●Mountain Computer HP-IL implementation for the 8048, with 
somewhat more memory, used e.g. in the HP 92198A 80-column 
video interface and the HP-IL EPROM programmer

11



●The C++ HP-IL protocol stack is designed to support both bit-at-a-
time and remote-message-at-a-time interfaces

●It does not currently support use of an actual 1LB3 chip, but that 
could be added using the previously described alternate R, AH, 
SH, and D state machines, and a glue layer to manage the 1LB3 
registers

12



HP-IL Protocol Stack Status:

●The HP-IL stack has been tested with only a very small number of 
test cases, running in an environment with multiple virtual HP-IL 
devices, including one controller and at least one device, custom 
written for the test cases

●No testing with preexisting virtual HP-IL devices nor physical HP-
IL devices has been performed yet

13



HP-IL Protocol Stack Future

●Once it reaches a level of tested functionality sufficient for use in 
“normal” virtual HP-IL devices (vs. dedicated test devices), the 
code will be made available under an open-source license 
(probably GPLv3), independently of Nonpareil II

●I do not intend to suggest that this HP-IL implementation is “better” 
in any overall sense than other implementation, nor am I pushing 
for any existing HP-IL devices to switch to this stack.

14



General C++ comments

●C++ was created earlier, but the first C++ standard was C++98 
(1998)

●Arguably the first “usable” C++ standard was C++11 (2011),

●which provided usable “smart pointers” std::shared_ptr, 
std::weak_ptr, and std::unique_ptr, to manage object ownership 
and lifetimes

●C++ (including standard libraries) is now a HUGE language – the 
official ISO C++23 standard is around 2000 pages, and the in-
development C++26 standard will expand things considerably

●The top three C++ compilers (Microsoft Visual C++, GCC, and 
Clang) support most or all of C++20 and some of C++23

15



●With the three-year release cycle, each new edition of the 
standard introduces a few major enhancements and many minor 
ones

●For a while, I stuck to mostly C++17, but there are enough useful 
additions in C++20 that my code now depends on it.

●Example: std::format, an I/O formatting library similar to C printf 
and scanf, but type-safe

●I am currently avoiding requiring C++23, since compiler and library 
support is not yet complete

16



C++ future

●C++26 will introduce “static reflection”, the ability for C++ code to 
ask the runtime for details of the definitions of classes, data types, 
variables, etc.

●Reflection is most commonly seen in dynamic-typed languages 
(e.g., Lisp and Python) and/or languages using a virtual machine 
(e.g. Java)

●Reflection will greatly simplify base classes that support 
serialization and deserialization of objects

●Currently Nonpareil II needs ad-hoc code for serialization and 
deserialization for e.g. calculator state save and reload, but this will 
eventually be replaced by static reflection

17


	Slide 1: C++ For Fun and Profit (choose one) Eric Smith
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

